Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 928: 172288, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599394

RESUMO

Plastic pollution of the ocean is a top environmental concern. Biodegradable plastics present a potential "solution" in combating the accumulation of plastic pollution, and their production is currently increasing. While these polymers will contribute to the future plastic marine debris budget, very little is known still about the behavior of biodegradable plastics in different natural environments. In this study, we molecularly profiled entire microbial communities on laboratory confirmed biodegradable polybutylene sebacate-co-terephthalate (PBSeT) and polyhydroxybutyrate (PHB) films, and non-biodegradable conventional low-density polyethylene (LDPE) films that were incubated in situ in three different coastal environments in the Mediterranean Sea. Samples from a pelagic, benthic, and eulittoral habitat were taken at five timepoints during an incubation period of 22 months. We assessed the presence of potential biodegrading bacterial and fungal taxa and contrasted them against previously published in situ disintegration data of these polymers. Scanning electron microscopy imaging complemented our molecular data. Putative plastic degraders occurred in all environments, but there was no obvious "core" of shared plastic-specific microbes. While communities varied between polymers, the habitat predominantly selected for the underlying communities. Observed disintegration patterns did not necessarily match community patterns of putative plastic degraders.

2.
Environ Microbiol ; 25(12): 2761-2775, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37132662

RESUMO

Little is known about early plastic biofilm assemblage dynamics and successional changes over time. By incubating virgin microplastics along oceanic transects and comparing adhered microbial communities with those of naturally occurring plastic litter at the same locations, we constructed gene catalogues to contrast the metabolic differences between early and mature biofilm communities. Early colonization incubations were reproducibly dominated by Alteromonadaceae and harboured significantly higher proportions of genes associated with adhesion, biofilm formation, chemotaxis, hydrocarbon degradation and motility. Comparative genomic analyses among the Alteromonadaceae metagenome assembled genomes (MAGs) highlighted the importance of the mannose-sensitive hemagglutinin (MSHA) operon, recognized as a key factor for intestinal colonization, for early colonization of hydrophobic plastic surfaces. Synteny alignments of MSHA also demonstrated positive selection for mshA alleles across all MAGs, suggesting that mshA provides a competitive advantage for surface colonization and nutrient acquisition. Large-scale genomic characteristics of early colonizers varied little, despite environmental variability. Mature plastic biofilms were composed of predominantly Rhodobacteraceae and displayed significantly higher proportions of carbohydrate hydrolysis enzymes and genes for photosynthesis and secondary metabolism. Our metagenomic analyses provide insight into early biofilm formation on plastics in the ocean and how early colonizers self-assemble, compared to mature, phylogenetically and metabolically diverse biofilms.


Assuntos
Microbiota , Plásticos , Plásticos/química , Oceanos e Mares , Biofilmes , Metagenoma
3.
Water Res ; 242: 120033, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244770

RESUMO

We fully sequenced the genomes of 16 Vibrio cultivars isolated from eel larvae, plastic marine debris (PMD), the pelagic brown macroalga Sargassum, and seawater samples collected from the Caribbean and Sargasso Seas of the North Atlantic Ocean. Annotation and mapping of these 16 bacterial genome sequences to a PMD-derived Vibrio metagenome-assembled genome created for this study showcased vertebrate pathogen genes closely-related to cholera and non-cholera pathovars. Phenotype testing of cultivars confirmed rapid biofilm formation, hemolytic, and lipophospholytic activities, consistent with pathogenic potential. Our study illustrates that open ocean vibrios represent a heretofore undescribed group of microbes, some representing potential new species, possessing an amalgam of pathogenic and low nutrient acquisition genes, reflecting their pelagic habitat and the substrates and hosts they colonize.


Assuntos
Água do Mar , Vibrio , Oceanos e Mares , Água do Mar/microbiologia , Vibrio/genética , Ecossistema , Oceano Atlântico
4.
Harmful Algae ; 122: 102369, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36754458

RESUMO

The holopelagic brown macroalgae Sargassum natans and Sargassum fluitans form essential habitats for attached and mobile fauna which contributes to a unique biodiversity in the Atlantic Ocean. However, holopelagic Sargassum natans (genotype I & VIII) and Sargassum fluitans (genotype III) have begun forming large accumulations with subsequent strandings on the western coast of Africa, the Caribbean and northern Brazil, threatening local biodiversity of coastal ecosystems and triggering economic losses. Moreover, stranded masses of holopelagic Sargassum may introduce or facilitate growth of bacteria that are not normally abundant in coastal regions where Sargassum is washing ashore. Hitherto, it is not clear how the holopelagic Sargassum microbiome varies across its growing biogeographic range and what factors drive the microbial composition. We determined the microbiome associated with holopelagic Sargassum from the Great Atlantic Sargassum Belt to coastal stranding sites in Mexico and Florida. We characterized the Sargassum microbiome via amplicon sequencing of the 16S V4 region hypervariable region of the rRNA gene. The microbial community of holopelagic Sargassum was mainly composed of photo(hetero)trophs, organic matter degraders and potentially pathogenic bacteria from the Pseudomonadaceae, Rhodobacteraceae and Vibrionaceae. Sargassum genotypes S. natans I, S. natans VIII and S. fluitans III contained similar microbial families, but relative abundances and diversity varied. LEfSE analyses further indicated biomarker genera that were indicative of Sargassum S. natans I/VIII and S. fluitans III. The holopelagic Sargassum microbiome showed biogeographic patterning with high relative abundances of Vibrio spp., but additional work is required to determine whether that represents health risks in coastal environments. Our study informs coastal management policy, where the adverse sanitary effects of stranded Sargassum might impact the health of coastal ecosystems.


Assuntos
Microbiota , Sargassum , Região do Caribe , Biodiversidade , Bactérias
5.
Sci Rep ; 12(1): 13465, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953623

RESUMO

At present, the distribution of plastic debris in the ocean water column remains largely unknown. Such information, however, is required to assess the exposure of marine organisms to plastic pollution as well as to calculate the ocean plastic mass balance. Here, we provide water column profiles (0-300 m water depth) of plastic (0.05-5 cm in size) concentration and key planktonic species from the eastern North Atlantic Ocean. The amount of plastic decreases rapidly in the upper few meters, from ~ 1 item/m3 (~ 1000 µg/m3) at the sea surface to values of ~ 0.001-0.01 items/m3 (~ 0.1-10 µg/m3) at 300 m depth. Ratios of plastic to plankton varied between ~ 10-5 and 1 plastic particles per individual with highest ratios typically found in the surface waters. We further observed that pelagic ratios were generally higher in the water column below the subtropical gyre compared to those in more coastal ecosystems. Lastly, we show plastic to (non-gelatinous) plankton ratios could be as high as ~ 102-107 plastic particles per individual when considering reported concentrations of small microplastics < 100 µm. Plastic pollution in our oceans may therefore soon exceed estimated safe concentrations for many pelagic species.


Assuntos
Plásticos , Poluentes Químicos da Água , Organismos Aquáticos , Oceano Atlântico , Ecossistema , Monitoramento Ambiental , Plâncton , Água , Poluentes Químicos da Água/análise
6.
Glob Chang Biol ; 28(9): 2991-3006, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35048454

RESUMO

Hundreds of studies have surveyed plastic debris in surface ocean gyre and convergence zones, however, comprehensive microplastics (MPs, ≤5 mm) assessments beneath these surface accumulation areas are lacking. Using in situ high-volume filtration, Manta net and MultiNet sampling, combined with micro-Fourier-transform-infrared imaging, we discovered a high abundance (up to 244.3 pieces per cubic meter [n m-3 ]) of small microplastics (SMPs, characteristically <100 µm) from the surface to near-sea floor waters of the remote South Atlantic Subtropical Gyre. Large horizontal and vertical variations in the abundances of SMP were observed, displaying inverse vertical trends in some cases. SMP abundances in pump samples were more than two orders of magnitude higher than large microplastics (LMPs, >300 µm) concurrently collected in MultiNet samples. Higher-density polymers (e.g., alkyd resins and polyamide) comprised >65% of the total pump sample count, highlighting a discrepancy between polymer compositions from previous ocean surface-based surveys, typically dominated by buoyant polymers such as polyethylene and polypropylene. Contrary to previous reports stating LMP preferentially accumulated at density gradients, SMP with presumably slower sinking rates are much less influenced by density gradients, thus resulting in a more even vertical distribution in the water column, and potentially longer residence times. Overall, our findings suggest that SMP is a critical and largely underexplored constituent of the oceanic plastic inventory. Additionally, our data support that weak current systems contribute to the formation of SMP hotspots at depth, implying a higher encounter rate for subsurface particle feeders. Our study unveils the prevalence of plastics in the entire water column, highlighting the urgency for more quantification of the deep-ocean MP, particularly the smaller size fraction, to better understand ecosystem exposure and to predict MP fate and impacts.


Assuntos
Microplásticos , Poluentes Químicos da Água , Oceano Atlântico , Ecossistema , Monitoramento Ambiental , Oceanos e Mares , Plásticos , Poluentes Químicos da Água/análise
7.
Environ Pollut ; 286: 117439, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34438479

RESUMO

This study investigated the biogeography, the presence and diversity of potentially harmful taxa harbored, and potential interactions between and within bacterial and eukaryotic domains of life on plastic debris in the Mediterranean. Using a combination of high-throughput DNA sequencing (HTS), Causal Network Analysis, and Scanning Electron Microscopy (SEM), we show regional differences and gradients in the Mediterranean microbial communities associated with marine litter, positive causal effects between microbes including between and within domains of life, and how these might impact the marine ecosystems surrounding them. Adjacent seas within the Mediterranean region showed a gradient in the microbial communities on plastic with non-overlapping endpoints (Adriatic and Ligurian Seas). The largest predicted inter-domain effects included positive effects of a novel red-algal Plastisphere member on its potential microbiome community. Freshwater and marine samples housed a diversity of fungi including some related to disease-causing microbes. Algal species related to those responsible for Harmful Blooms (HABs) were also observed on plastic pieces including members of genera not previously reported on Plastic Marine Debris (PMD).


Assuntos
Microbiota , Plásticos , Bactérias , Eucariotos , Fungos
8.
Water Res ; 201: 117289, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102596

RESUMO

Biofouling causing an increase in plastic density and sinking is one of the hypotheses to account for the unexpectedly low amount of buoyant plastic debris encountered at the ocean surface. Field surveys show that polyethylene and polypropylene, the two most abundant buoyant plastics, both occur below the surface and in sediments, and experimental studies confirm that biofouling can cause both of these plastics to sink. However, studies quantifying the actual density of fouled plastics are rare, despite the fact that density will determine the transport and eventual fate of plastic in the ocean. Here we investigated the role of microbial biofilms in sinking of polyethylene microplastic and quantified the density changes natural biofouling communities cause in the coastal waters of the North Sea. Molecular data confirmed the variety of bacteria and eukaryotes (including animals and other multicellular organisms) colonizing the plastic over time. Fouling communities increased the density of plastic and caused sinking, and the plastic remained negatively buoyant even during the winter with lower growth rates. Relative surface area alone, however, did not predict whether a plastic piece sank. Due to patchy colonization, fragmentation of sinking pieces may result in smaller pieces regaining buoyancy and returning to the surface. Our results suggest that primarily multicellular organisms cause sinking of plastic pieces with surface area to volume ratios (SA:V) below 100 (generally pieces above a couple hundred micrometers in size), and that this is a "tipping point" at which microbial biofilms become the key players causing sinking of smaller pieces with higher SA:V ratios, including most fibers that are too small for larger (multicellular) organisms to colonize.


Assuntos
Incrustação Biológica , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Mar do Norte , Plásticos , Polietileno , Poluentes Químicos da Água/análise
9.
ISME J ; 15(1): 67-77, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32879460

RESUMO

Trillions of plastic debris fragments are floating at sea, presenting a substantial surface area for microbial colonization. Numerous cultivation-independent surveys have characterized plastic-associated microbial biofilms, however, quantitative studies addressing microbial carbon biomass are lacking. Our confocal laser scanning microscopy data show that early biofilm development on polyethylene, polypropylene, polystyrene, and glass substrates displayed variable cell size, abundance, and carbon biomass, whereas these parameters stabilized in mature biofilms. Unexpectedly, plastic substrates presented lower volume proportions of photosynthetic cells after 8 weeks, compared to glass. Early biofilms displayed the highest proportions of diatoms, which could influence the vertical transport of plastic debris. In total, conservative estimates suggest 2.1 × 1021 to 3.4 × 1021 cells, corresponding to about 1% of the microbial cells in the ocean surface microlayer (1.5 × 103 to 1.1 × 104 tons of carbon biomass), inhabit plastic debris globally. As an unnatural addition to sea surface waters, the large quantity of cells and biomass carried by plastic debris has the potential to impact biodiversity, autochthonous ecological functions, and biogeochemical cycles within the ocean.


Assuntos
Carbono , Plásticos , Biomassa , Conservação dos Recursos Naturais , Monitoramento Ambiental , Água do Mar
10.
Nat Rev Microbiol ; 18(3): 139-151, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31937947

RESUMO

The plastisphere, which comprises the microbial community on plastic debris, rivals that of the built environment in spanning multiple biomes on Earth. Although human-derived debris has been entering the ocean for thousands of years, microplastics now numerically dominate marine debris and are primarily colonized by microbial and other microscopic life. The realization that this novel substrate in the marine environment can facilitate microbial dispersal and affect all aquatic ecosystems has intensified interest in the microbial ecology and evolution of this biotope. Whether a 'core' plastisphere community exists that is specific to plastic is currently a topic of intense investigation. This Review provides an overview of the microbial ecology of the plastisphere in the context of its diversity and function, as well as suggesting areas for further research.


Assuntos
Microbiota , Plásticos , Biodegradação Ambiental , Poluentes Ambientais , Resíduos
11.
Mol Ecol Resour ; 20(3): 620-634, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31782619

RESUMO

Plastic marine debris (PMD) affects spatial scales of life from microbes to whales. However, understanding interactions between plastic and microbes in the "Plastisphere"-the thin layer of life on the surface of PMD-has been technology-limited. Research into microbe-microbe and microbe-substrate interactions requires knowledge of community phylogenetic composition but also tools to visualize spatial distributions of intact microbial biofilm communities. We developed a CLASI-FISH (combinatorial labelling and spectral imaging - fluorescence in situ hybridization) method using confocal microscopy to study Plastisphere communities. We created a probe set consisting of three existing phylogenetic probes (targeting all Bacteria, Alpha-, and Gammaproteobacteria) and four newly designed probes (targeting Bacteroidetes, Vibrionaceae, Rhodobacteraceae and Alteromonadaceae) labelled with a total of seven fluorophores and validated this probe set using pure cultures. Our nested probe set strategy increases confidence in taxonomic identification because targets are confirmed with two or more probes, reducing false positives. We simultaneously identified and visualized these taxa and their spatial distribution within the microbial biofilms on polyethylene samples in colonization time series experiments in coastal environments from three different biogeographical regions. Comparing the relative abundance of 16S rRNA gene amplicon sequencing data with cell-count abundance data retrieved from the microscope images of the same samples showed a good agreement in bacterial composition. Microbial communities were heterogeneous, with direct spatial relationships between bacteria, cyanobacteria and eukaryotes such as diatoms but also micro-metazoa. Our research provides a valuable resource to investigate biofilm development, succession and associations between specific microscopic taxa at micrometre scales.


Assuntos
Microbiota/efeitos dos fármacos , Plásticos/efeitos adversos , Bactérias/efeitos dos fármacos , Bactérias/genética , Eucariotos/efeitos dos fármacos , Eucariotos/genética , Hibridização in Situ Fluorescente/métodos , Microbiota/genética , Microscopia/métodos , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/química
12.
Ecol Evol ; 7(2): 516-525, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28116048

RESUMO

Over the past 5 years, massive accumulations of holopelagic species of the brown macroalga Sargassum in coastal areas of the Caribbean have created "golden tides" that threaten local biodiversity and trigger economic losses associated with beach deterioration and impact on fisheries and tourism. In 2015, the first report identifying the cause of these extreme events implicated a rare form of the holopelagic species Sargassum natans (form VIII). However, since the first mention of S. natans VIII in the 1930s, based solely on morphological characters, no molecular data have confirmed this identification. We generated full-length mitogenomes and partial chloroplast genomes of all representative holopelagic Sargassum species, S. fluitans III and S. natans I alongside the putatively rare S. natans VIII, to demonstrate small but consistent differences between S. natans I and VIII (7 bp differences out of the 34,727). Our comparative analyses also revealed that both S. natans I and S. natans VIII share a very close phylogenetic relationship with S. fluitans III (94- and 96-bp differences of 34,727). We designed novel primers that amplified regions of the cox2 and cox3 marker genes with consistent polymorphic sites that enabled differentiation between the two S. natans forms (I and VIII) from each other and both from S. fluitans III in over 150 Sargassum samples including those from the 2014 golden tide event. Despite remarkable gene synteny and sequence conservation, the three Sargassum forms differ in morphology, ecology, and distribution patterns, warranting more extensive interrogation of holopelagic Sargassum genomes as a whole.

13.
Front Microbiol ; 5: 563, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25431569

RESUMO

The genus Vibrio is a metabolically diverse group of facultative anaerobic bacteria, common in aquatic environments and marine hosts. The genus contains several species of importance to human health and aquaculture, including the causative agents of human cholera and fish vibriosis. Vibrios display a wide variety of known life histories, from opportunistic pathogens to long-standing symbionts with individual host species. Studying Vibrio ecology has been challenging as individual species often display a wide range of habitat preferences, and groups of vibrios can act as socially cohesive groups. Although strong associations with salinity, temperature and other environmental variables have been established, the degree of habitat or host specificity at both the individual and community levels is unknown. Here we use oligotyping analyses in combination with a large collection of existing Vibrio 16S ribosomal RNA (rRNA) gene sequence data to reveal patterns of Vibrio ecology across a wide range of environmental, host, and abiotic substrate associated habitats. Our data show that individual taxa often display a wide range of habitat preferences yet tend to be highly abundant in either substrate-associated or free-living environments. Our analyses show that Vibrio communities share considerable overlap between two distinct hosts (i.e., sponge and fish), yet are distinct from the abiotic plastic substrates. Lastly, evidence for habitat specificity at the community level exists in some habitats, despite considerable stochasticity in others. In addition to providing insights into Vibrio ecology across a broad range of habitats, our study shows the utility of oligotyping as a facile, high-throughput and unbiased method for large-scale analyses of publically available sequence data repositories and suggests its wide application could greatly extend the range of possibilities to explore microbial ecology.

14.
Environ Sci Technol ; 48(9): 4732-8, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24708264

RESUMO

We present an extensive survey of floating plastic debris in the eastern North and South Pacific Oceans from more than 2500 plankton net tows conducted between 2001 and 2012. From these data we defined an accumulation zone (25 to 41 °N, 130 to 180 °W) in the North Pacific subtropical gyre that closely corresponds to centers of accumulation resulting from the convergence of ocean surface currents predicted by several oceanographic numerical models. Maximum plastic concentrations from individual surface net tows exceeded 10(6) pieces km(-2), with concentrations decreasing with increasing distance from the predicted center of accumulation. Outside the North Pacific subtropical gyre the median plastic concentration was 0 pieces km(-2). We were unable to detect a robust temporal trend in the data set, perhaps because of confounded spatial and temporal variability. Large spatiotemporal variability in plastic concentration causes order of magnitude differences in summary statistics calculated over short time periods or in limited geographic areas. Utilizing all available plankton net data collected in the eastern Pacific Ocean (17.4 °S to 61.0 °N; 85.0 to 180.0 °W) since 1999, we estimated a minimum of 21,290 t of floating microplastic.


Assuntos
Plásticos/análise , Resíduos/análise , Modelos Teóricos , Oceano Pacífico , Plâncton , Água do Mar/análise
15.
Environ Sci Technol ; 47(13): 7137-46, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23745679

RESUMO

Plastics are the most abundant form of marine debris, with global production rising and documented impacts in some marine environments, but the influence of plastic on open ocean ecosystems is poorly understood, particularly for microbial communities. Plastic marine debris (PMD) collected at multiple locations in the North Atlantic was analyzed with scanning electron microscopy (SEM) and next-generation sequencing to characterize the attached microbial communities. We unveiled a diverse microbial community of heterotrophs, autotrophs, predators, and symbionts, a community we refer to as the "Plastisphere". Pits visualized in the PMD surface conformed to bacterial shapes suggesting active hydrolysis of the hydrocarbon polymer. Small-subunit rRNA gene surveys identified several hydrocarbon-degrading bacteria, supporting the possibility that microbes play a role in degrading PMD. Some Plastisphere members may be opportunistic pathogens (the authors, unpublished data) such as specific members of the genus Vibrio that dominated one of our plastic samples. Plastisphere communities are distinct from surrounding surface water, implying that plastic serves as a novel ecological habitat in the open ocean. Plastic has a longer half-life than most natural floating marine substrates, and a hydrophobic surface that promotes microbial colonization and biofilm formation, differing from autochthonous substrates in the upper layers of the ocean.


Assuntos
Bactérias/classificação , Polietileno , Polipropilenos , Água do Mar/microbiologia , Bactérias/genética , Bactérias/ultraestrutura , DNA Bacteriano/genética , Microscopia Eletrônica de Varredura , Resíduos
16.
Mar Pollut Bull ; 62(8): 1683-92, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21719036

RESUMO

To understand the spatial variation in concentrations and compositions of organic micropollutants in marine plastic debris and their sources, we analyzed plastic fragments (∼10 mm) from the open ocean and from remote and urban beaches. Polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), dichloro-diphenyl-trichloroethane and its metabolites (DDTs), polybrominated diphenyl ethers (PBDEs), alkylphenols and bisphenol A were detected in the fragments at concentrations from 1 to 10,000 ng/g. Concentrations showed large piece-to-piece variability. Hydrophobic organic compounds such as PCBs and PAHs were sorbed from seawater to the plastic fragments. PCBs are most probably derived from legacy pollution. PAHs showed a petrogenic signature, suggesting the sorption of PAHs from oil slicks. Nonylphenol, bisphenol A, and PBDEs came mainly from additives and were detected at high concentrations in some fragments both from remote and urban beaches and the open ocean.


Assuntos
Praias , Monitoramento Ambiental , Plásticos/análise , Água do Mar/análise , Poluentes Químicos da Água/análise , Compostos Benzidrílicos , Cidades , Éteres Difenil Halogenados/análise , Oceanos e Mares , Fenóis/análise , Plásticos/química , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Água do Mar/química
17.
Sci Total Environ ; 409(10): 1984-9, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21354595

RESUMO

Electrochemistry allows for rapid identification of multiple metals and other chemical complexes common in acid rock drainage (ARD) systems. Voltammetric scans using a single gold microelectrode of water samples from geochemically distinct areas of the Río Tinto (RT) in southwestern Spain were clearly recognizable in the field and in samples stored at room temperature for over 6 months. Major voltammetric peaks of iron(III) and copper(II) were identified on a single constantly renewable gold microelectrode. Confirmation of these peaks was performed by spiking with standard metal solutions in the laboratory. This voltammetric technique is a rapid, direct and inexpensive in situ method for identification of water sources and their chemical characteristics, as well as an economical way to monitor environmental changes and remediation efforts.


Assuntos
Monitoramento Ambiental/instrumentação , Ouro/química , Microeletrodos , Poluentes Químicos da Água/química , Técnicas de Química Analítica , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
18.
ISME J ; 5(1): 42-50, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20631808

RESUMO

Understanding biotic versus abiotic forces that shape community structure is a fundamental aim of microbial ecology. The acidic and heavy metal extreme Río Tinto (RT) in southwestern Spain provides a rare opportunity to conduct an ecosystem-wide biodiversity inventory at the level of all three domains of life, because diversity there is low and almost exclusively microbial. Despite improvements in high-throughput DNA sequencing, environmental biodiversity studies that use molecular metrics and consider entire ecosystems are rare. These studies can be prohibitively expensive if domains are considered separately, and differences in copy number of eukaryotic ribosomal RNA genes can bias estimates of relative abundances of phylotypes recovered. In this study we have overcome these barriers (1) by targeting all three domains in a single polymerase chain reaction amplification and (2) by using a replicated sampling design that allows for incidence-based methods to extract measures of richness and carry out downstream analyses that address community structuring effects. Our work showed that combined bacterial and archaeal richness is an order of magnitude higher than eukaryotic richness. We also found that eukaryotic richness was highest at the most extreme sites, whereas combined bacterial and archaeal richness was highest at less extreme sites. Quantitative community phylogenetics showed abiotic forces to be primarily responsible for shaping the RT community structure. Canonical correspondence analysis revealed co-occurrence of obligate symbionts and their putative hosts that may contribute to biotic forces shaping community structure and may further provide a possible mechanism for persistence of certain low-abundance bacteria encountered in the RT.


Assuntos
Biota , Meio Ambiente , Rios , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Eucariotos/classificação , Eucariotos/genética , Genes de RNAr/genética , Espanha
19.
PLoS One ; 3(12): e3853, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19052647

RESUMO

BACKGROUND: The Río Tinto (RT) is distinguished from other acid mine drainage systems by its natural and ancient origins. Microbial life from all three domains flourishes in this ecosystem, but bacteria dominate metabolic processes that perpetuate environmental extremes. While the patchy geochemistry of the RT likely influences the dynamics of bacterial populations, demonstrating which environmental variables shape microbial diversity and unveiling the mechanisms underlying observed patterns, remain major challenges in microbial ecology whose answers rely upon detailed assessments of community structures coupled with fine-scale measurements of physico-chemical parameters. METHODOLOGY/PRINCIPAL FINDINGS: By using high-throughput environmental tag sequencing we achieved saturation of richness estimators for the first time in the RT. We found that environmental factors dictate the distribution of the most abundant taxa in this system, but stochastic niche differentiation processes, such as mutation and dispersal, also contribute to observed diversity patterns. CONCLUSIONS/SIGNIFICANCE: We predict that studies providing clues to the evolutionary and ecological processes underlying microbial distributions will reconcile the ongoing debate between the Baas Becking vs. Hubbell community assembly hypotheses.


Assuntos
Biodiversidade , Rios/microbiologia , Microbiologia da Água , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Análise por Conglomerados , DNA Bacteriano/análise , Ecossistema
20.
Int. microbiol ; 11(4): 251-260, dic. 2008. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-61312

RESUMO

Four algal photosynthetic biofilms were collected from the Río Tinto (SW Spain) at four localities: AG, Euglena and Pinnularia biofilms; ANG, Chlorella and Pinnularia biofilms; RI, Cyanidium and Dunaliella biofilms; and CEM, Cyanidium, Euglena and Pinnularia biofilms. Community composition and structure were studied by a polyphasic approach consisting of 16S rRNA analysis, scanning electron microscopy by back-scattered electron detection mode (SEM-BSE), and fluorescence in-situ hybridization (FISH). Acidophilic prokaryotes associated with algal photosynthetic biofilms included sequences related to the Alpha-, Beta-, and Gammaproteobacteria (phylum Proteobacteria) and to the phyla Nitrospira, Actinobacteria, Acidobacteria and Firmicutes. Sequences from the Archaea domain were also identified. No more than seven distinct lineages were detected in any biofilm, except for those from RI, which contained fewer groups of Bacteria. Prokaryotic communities of the thinnest algal photosynthetic biofilms (-100 microm) were more related to those in the water column, including Leptospirillum populations. In general, thick biofilms (200 microm) generate microniches that could facilitate the development of less-adapted microorganisms (coming from the surrounding environment) to extreme conditions, thus resulting in a more diverse prokaryotic biofilm (AU)


No disponible


Assuntos
Fatores de Iniciação em Procariotos/ultraestrutura , Eucariotos/microbiologia , Biofilmes/classificação , Biofilmes/crescimento & desenvolvimento , Fotossíntese/genética , Hibridização in Situ Fluorescente/tendências , Hibridização in Situ Fluorescente , Hibridização In Situ , Características Físico-Químicas da Água/análise , Características Físico-Químicas da Água/métodos , Eucariotos/isolamento & purificação , Fotossíntese/fisiologia , Eucariotos/fisiologia , Eucariotos/ultraestrutura , Biofilmes/efeitos da radiação , Fotossíntese/efeitos da radiação , 24965/métodos , 24961
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...